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Abstract. An extension of theH -theorem for dissipative particle dynamics (DPD) to the case
of a multicomponent fluid is made. Detailed balance and an additionalH -theorem are proved
for an energy-conserving version of the DPD algorithm. The implications of these results for
the statistical mechanics of the method are discussed.

1. Introduction

Interest in the rheological and dynamical properties of complex fluids [1] over the past
decade has seen the introduction of several new techniques for their simulation on
mesoscopiclength scales. These methods include lattice-gas automata (LGA), lattice-
Boltzmann equation (LBE) and dissipative particle dynamics (DPD) [2]. The aim of this
paper is to explore some of the statistical mechanical properties of the rapidly evolving
DPD model, and to extend these results in order to keep pace with new developments being
made in the algorithms.

The DPD method was originally introduced by Hoogerbrugge and Koelman [3] as a
discrete time algorithm; this was subsequently modified and reinterpreted as a discrete
time approximation to an underlying system obeying Langevin dynamics (with momentum
conservation) by Español and Warren [4], in order to guarantee the existence of a Gibbsian
(specifically a canonical) equilibrium state. Applications of the model include colloidal
suspensions [5], polymer suspensions [6] and binary mixtures [7, 8]. A dynamical theory
has been presented [9, 10] for the continuous time limit and the equilibrium for finite
timestep has been investigated [11].

We briefly describe the implementation of the DPD method. The system consists of a
set ofN discrete particles which move in continuous space and in discrete timesteps, the
interval between which may be reduced to being infinitesimal. At each timestepδt , the
particles’ momenta are updated by a momentum-conserving interaction with each particle
inside a neighbourhood of radiusR0. This interaction includes three distinct forces, which
can be described asconservativeF C, dissipativeF D and randomF R. Between each tick
of the clock, the particles all propagate freely according to their velocities. In the limit of
continuous time, the DPD equations of motion are most effectively described in terms of
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the following stochastic differential equations:

v̇i =
∑
j 6=i
{F C

ij + F D
ij + F R

ij } (1)

ṙi = vi (2)

for each particle labelled by the subscripti. The forces take the following forms:

F C
ij = −

1

m

∂φ

∂rij
(3)

F D
ij = −γwD(rij )[eij · vij ]eij (4)

F R
ij = σwR(rij )eij ζij (5)

whereφ is a potential energy,rij = ri − rj is the relative separation vector andeij is the
unit vector in the direction ofrij ; for simplicity, all particles are assumed here to have the
same massm. The functionswD(rij ) andwR(rij ) are weighting functions which limit the
action of the dissipative and random forces to a finite rangeR0. The random elementsζij
are Gaussian white noise with zero mean:ζij = 0. They are uncorrelated for different pairs
of particles and for different times:ζij (t)ζkl(t ′) = (δikδjl + δilδjk)δ(t − t ′). It should be
noted that these forces conserve both momentum and angular momentum but not energy.

The algorithm presented above is the traditional, isothermal DPD method. Following a
brief description of the statistical mechanical concepts involved in this method, we present
an H -theorem for the multicomponent extension to this isothermal DPD fluid. We then
briefly describe the alternative energy-conserving DPD model and examine detailed balance
and anH -theorem in this context.

2. On detailed balance andH-theorems

It is important at the outset to explain the significance and importance of the statistical
mechanical properties of detailed balance and the so-calledH -theorem. Detailed balance
is known to be a sufficient, but not necessary, condition which ensures that a Gibbsian
equilibrium state exists in the ensemble representation of a dynamical system. It is
possible for systems not satisfying detailed balance to exhibit equilibrium states; however,
characterizing these is then a much harder task. The virtue of the modifications made by
Espãnol and Warren to the original DPD algorithm is that, in the limit of continuous time,
theN -body DPD system then satisfies the detailed balance condition, thereby guaranteeing
the existence of a well-defined equilibrium state.

In the literature, at least two separate kinds of ‘H -theorem’ can be distinguished.
First, any Markov chain or process which has an equilibrium distribution will have an
H -theorem associated with it, in the sense of possessing a Lyapounov function that changes
monotonically with time. Indeed, a whole class of Lyapounov functions achieve this; the
class is defined as the expectation of any convex function of the relative-to-equilibrium
probability density. The proof of suchH -theorems follows directly from the linear equation
(also referred to as the ‘master equation’) for theN -body distribution function. Detailed
balance plays a role here, in that it specifies what the equilibrium distribution is; this
information is needed to write down the Lyapounov function.

However, the arguably more famous BoltzmannH -theorem is quite a different notion,
and is of much more restricted validity. Boltzmann’sH -function is defined in terms of
the one-body distribution function, and its time-monotonicity can only be derived if we
know the kinetic equation obeyed by this reduced distribution. Moreover, this equation is
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nonlinear so that the choice ofH is now much more restricted; for the Boltzmann equation
itself, only the expectation of the logarithm of this reduced probability distribution suffices.
In proving Boltzmann’sH -theorem, use is made of the property of detailed balance.

Note in passing that time-symmetry is a stronger property than detailed balance; the
former implies the latter, but is not implied by it. Thus, detailed balance is obeyed by both
Newton’s equations of motion and by dissipative particle dynamics, although the former is
time-symmetric while the latter is not.

The existence of anH -theorem for a given system can be used to check on the numerical
stability of any algorithm implemented to simulate it; numerical instabilities which lead to
non-monotonicity of theH -functional concerned can then be precluded. The issue of the
existence of detailed balance and relatedH -theorems is thus clearly of importance for the
various mesoscale modelling and simulation techniques.

By contrast with (continuous time) DPD, virtually all interacting lattice-gas and lattice-
Boltzmann models have no known detailed balance condition; therefore, their equilibrium
states are generally unknown, while the lack of any associatedH -theorems makes the real-
valued lattice-Boltzmann methods, in particular, susceptible to poorly understood numerical
instabilities. Indeed, because detailed balance is not satisfied in such models, it makes their
theoretical analysis by standard methods of nonequilibrium statistical mechanics well nigh
impossible.

3. H-theorem for multicomponent, isothermal DPD

Detailed balance and anH -theorem (of the first kind mentioned in section 2, i.e. for the full
N -body distribution) for the single component DPD fluid have already been demonstrated
[9]. The proof of detailed balance for general DPD models of interacting multicomponent
fluids has also been derived [13]. Here, we aim to extend this form ofH -theorem to the
case of a multicomponent fluid, which includes the case of binary immiscible fluids [7, 8].

It has been demonstrated [13] that the evolution equation for theN -particle distribution
function is the Fokker–Planck equation for the multicomponent fluid:∂tP = LMCP , where
the multicomponent Fokker–Planck operatorLMC is defined as

LMC = −
[∑

α

∑
iα

viα ·
∂

∂riα
+
∑
αβ

∑
iαjβ

F C
iαjβ

m
· ∂

∂viα

]

+
∑
αβ

∑
iαjβ

γ

m
wD(riαjβ )

[
eiαjβ ·

∂

∂viα

]
eiαjβ ·

[
viαjβ +

θ

m

(
∂

∂viα
− ∂

∂vjβ

)]
(6)

where α and β are sums over different types of particles andiα and jβ sum over all
particles of each type. The parameterθ is the equilibrium temperature defined through
the fluctuation-dissipation theorem as:θ = mσ 2/2γ . The relevantH -functional for the
multicomponent case is a simple extension of that in the single component case. As expected
for an isothermal system, it is just the expectation of the associated free energy〈U − θS〉,
whereU is the internal energy,θ is the equilibrium temperature as defined above,S is the
global entropy, and the expectation is taken using the fullN -particle distribution function,
P :

F [P(Γ, t)] =
∫

dΓP
{∑

α

∑
iα

[
mv2

iα

2
+ 1

2

∑
β

∑
jβ

V (riαjβ )

]
+ θ lnP

}
. (7)
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Using the time-evolution operator for the multicomponent system (6), it is possible to
show that

dF
dt
= −

∑
αβ

∑
iαjβ

∫
dΓ

γwD(riαjβ )

P

[
eiαjβ ·

[
viαjβ +

θ

m

(
∂

∂viα
− ∂

∂vjβ

)]
P

]2

. (8)

It is then apparent that the time derivative of the functionalF is the sum of negative
definite terms, and therefore that the functional itself is monotonically decreasing in time.
The appropriate equilibrium distribution for the multicomponent system occurs when this
functional stops decreasing. It is easy to show that this occurs when it reaches the Gibbsian
distribution for the associated conservative system, i.e. as if the dissipative and random
forces were not present:

Peqm= 1

ZMC
exp

{
− 1

θ

∑
α

∑
iα

[
mv2

iα

2
+ 1

2

∑
β

∑
jβ

V (riαjβ )

]}
(9)

ZMC being the multicomponent canonical partition function, defined in the normal way.

4. Energy-conserving DPD

An energy conserving version of DPD has recently been presented by Español [12].
This involves the introduction of an internal energy variableεi for each DPD particle
(now interpreted as a cluster of atoms or molecules, into which the dissipated energy
is assumed to flow). There is an entropys(εi) which needs to be specified in order to
describe a given system, and the temperature is defined in the usual thermodynamic way as
θi = (∂s(εi)/∂εi)−1. It is then possible to formulate a new DPD algorithm which conserves
the total energy of the system, as well as momentum and angular momentum [12]. An
appropriate set of stochastic differential equations is

ṙi = vi (10)

v̇i =
∑
j 6=i

[
1

m
FC
ij − γijwD(rij )(eij · vij )eij + σijwR(rij )eij ζij

]
(11)

ε̇i = m

2

∑
j 6=i

[
γijwD(rij )(vij · eij )2− σ 2

ijw
2
R(rij )− σijwR(rij )(eij · vij )ζij

+κij
{

1

θi
− 1

θj

}
AD(rij )+ αijAR(rij )ζ

ε
ij

]
. (12)

Here the functionsAD(rij ) andAR(rij ) are additional weighting functions for what can be
interpreted as theconductionand random heat fluxterms respectively, whileκij and αij
are their strengths;ζ εij are random elements which are uncorrelated to the elementsζij and

have zero meanζ εij = 0. They are uncorrelated for different times and different pairs of

particles and are antisymmetric:ζ εij (t)ζ
ε
kl(t
′) = (δikδjl − δilδjk)δ(t − t ′). We also note that

the strengths of the random and dissipative forces (σ andγ ) can now, in general, vary for
different particle pairs.

Following the original derivation [12], we make the additional assumptions

A2
D(r) = AR(r) α2

ij = 2κij w2
R(r) = wD(r) (13)

which mean that the Fokker–Planck equation for the evolution of theN -particle distribution
functionP , can be written as

∂tP = [LC+ LVH + LHC]P (14)
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where the operators on the right-hand side are defined as follows:

LC = −
∑
i

vi ·
∂

∂ri
−
∑
j 6=i

F C
ij

m
· ∂
∂vi

(15)

LVH = 1

2

∑
j 6=i

wD(rij )Lij

[
γij (vij · eij )+ Lij

σ 2
ij

2

]
(16)

LHC =
∑
j 6=i

AD(rij )
∂

∂εi

[
1

θj
− 1

θi
+ ∂

∂εi
− ∂

∂εj

]
κij (17)

Lij = eij ·
[
∂

∂vi
− ∂

∂vj
− m

2
vij

[
∂

∂εi
+ ∂

∂εj

]]
(18)

where the subscripts C, VH and HC refer to theconservative, viscous heatingand heat
conductionterms respectively.

5. Detailed balance for energy-conserving DPD

If the evolution operator for a system isL and we designate its adjoint by the operatorL†,
then the detailed balance constraint [14] can be written in the following way:

LPeqmϕ = PeqmL†εϕ (19)

where the superscriptε indicates that all variables that areodd under time reversal are to
have their signs reversed. In the case of DPD, this means that the velocities attract an
additional minus sign. The functionϕ can be any function of the phase space variables.

The appropriate operators for the energy-conserving version of DPD are

L†εC = −
∑
i

v · ∂
∂ri
−
∑
j 6=i

F C
ij

m
· ∂
∂vi
= LC (20)

L†εVH =
1

2

∑
j 6=i

wD(rij )

[
−γij (vij · eij )+ Lij

σ 2
ij

2

]
Lij (21)

L†εHC = −
∑
j 6=i

AD(rij )κij

[
1

θj
− 1

θi
+ ∂

∂εi
− ∂

∂εj

]
∂

∂εi
. (22)

We can then show that

LCPeqmϕ = PeqmLCϕ + ϕLCPeqm

= PeqmL†εC ϕ (23)

LVHPeqmϕ = 1

2

∑
j 6=i

wD(rij )Lij

{
γij (eij · vij )+ Lij σ

2

2

}
Peqmϕ

= 1

2

∑
j 6=i

wD(rij )LijPeqmLij
σ 2

2
ϕ

= 1

2

∑
j 6=i

wD(rij )LijPeqm

[
−γij (eij · vij )+ Lij σ

2

2

]
Lijϕ

= PeqmL†εVH (24)
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and

LHCPeqmϕ =
∑
j 6=i

AD(rij )
∂

∂εi

[
1

θi
− 1

θj
+ ∂

∂εi
− ∂

∂εj

]
κijPeqmϕ

= 1

2

∑
j 6=i

AD(rij )κij

[
∂

∂εi
− ∂

∂εj

] [
1

θi
− 1

θj
+ ∂

∂εi
− ∂

∂εj

]
Peqmϕ

= 1

2

∑
j 6=i

AD(rij )κij

[
∂

∂εi
− ∂

∂εj

]
Peqm

[
∂

∂εi
− ∂

∂εj

]
ϕ

= 1

2

∑
j 6=i

AD(rij )κijPeqm

[
1

θi
− 1

θj
+ ∂

∂εi
− ∂

∂εj

] [
∂

∂εi
− ∂

∂εj

]
ϕ

=
∑
j 6=i

AD(rij )κijPeqm

[
1

θi
− 1

θj
+ ∂

∂εi
− ∂

∂εj

]
∂

∂εi
ϕ

= PeqmL†εHCϕ (25)

where we choose the strengths of the dissipative and random forces to satisfy the following
relations:

σij = σ γij = mσ 2

4

[
1

θi
+ 1

θj

]
. (26)

It is therefore apparent that

[LC+ LVH + LHC]Peqmϕ = Peqm[L†εC + L†εVH + L†εHC]ϕ (27)

and therefore that the energy-conserving DPD algorithm satisfies detailed balance. The
equilibrium distribution associated with this detailed balance condition satisfies the following
relations: [

Lij + (eij · vij )m
2

(
1

θi
+ 1

θj

)]
Peqm= 0 (28)[

1

θj
− 1

θi
+ ∂

∂εi
− ∂

∂εj

]
Peqm= 0. (29)

Therefore the equilibrium distribution consistent with [LC + LVH + LHC]Peqm= 0 has the
following form:

Peqm= 1

ZEC
exp

{∑
i

s(εi)

}
(30)

whereZEC is the normalization constant.

6. H-theorem for energy-conserving DPD

The H -theorem for energy-conserving DPD can now be formulated. We first define the
following H -functional:

S[P(Γ)](t) =
∫

dΓP(Γ, t)
[{∑

i

s(εi)

}
− lnP(Γ, t)

]
. (31)
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Then, with the aid of the appropriate Fokker–Planck equation (14), it is possible to show
that the time-evolution of this functional is

dS[P(Γ)](t)
dt

= σ 2

4

∫
dΓ
∑
j 6=i

wD(rij )

P

[{
Lij + (eij · vij )m

2

(
1

θi
+ 1

θj

)}
P

]2

+1

2

∫
dΓ
∑
j 6=i

AD(rij )

P

[{
1

θj
− 1

θj
+ ∂

∂εi
− ∂

∂εj

}
P

]2

κij . (32)

We note that the time derivative of the functionalS consists of sums of two types of terms,
each of which is positive definite. ThereforeS[P(Γ)] is monotonically increasing in time
and the equilibrium is reached when this time-evolution stops. It is easy to show that this
can only be achieved when the equilibrium distribution satisfies the following relations:[

Lij + (eij · vij )m
2

(
1

θi
+ 1

θj

)]
Peqm= 0 (33)[

1

θj
− 1

θi
+ ∂

∂εi
− ∂

∂εj

]
Peqm= 0 (34)

and therefore that the equilibrium distribution consistent with [LC + LVH + LHC]Peqm= 0
will be

Peqm= 1

ZEC
exp

{∑
i

s(εi)

}
. (35)

This is naturally the same equilibrium distribution already recognized as being a stationary
point of the Fokker–Planck evolution equations (28) and (29). TheN -body H -theorem
provides additional information because it guarantees that the system approaches this
equilibrium state monotonically.

The H -functional (31) may be interpreted as the total entropy of the system. We
see that the first term in the functional represents the microscopic entropy of each DPD
particle while the second term represents the normal macroscopic entropy−P lnP . That
the relevant functional is in this case the total system entropy, rather than a free energy,
could be expected from the fact that the system is now energy conserving.

For notational ease, the detailed balance property andH -theorem for energy-conserving
DPD have been presented for the single component case. However, their extension to the
multicomponent case can be achieved in a similar manner to the isothermalH -theorem
result presented here.

7. Conclusions

We have shown that the desirable statistical mechanical properties of detailed balance and
the existence ofH -theorems may be extended to general multicomponent interacting DPD
systems, whether maintained at constant temperature or at constant energy. Of course, such
properties are rigorously valid in the continuous time limit, and are only approximately true
for discrete-time implementations of these algorithms. The approximations improve as the
size of the timestep is decreased. Detailed balance makes possible the theoretical analysis
of models based on the DPD equations of motion, while theH -theorem provides a means
to control numerical instabilities in computer simulations.
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